Sulphate transport in Neurospora crassa is achieved by two distinct sulphate permeases, I and II, encoded by the cys-13 and cys-14 genes, respectively. The synthesis of both sulphate permeases is subject to sulphur repression and requires the global positive-acting regulatory protein CYS3, CYS3, a bZIP DNA binding protein, regulates cys-14 expression at the transcriptional level and binds in vitro specifically to three DNA-recognition sites, A, B, and C, in the cys-14 upstream region. In vivo functional analysis of the cys-14 promoter was carried out with 5' deletions and by deletions or mutations of CYS3 DNA-binding sites. The most distal CYS3-binding site, C, located 1.4kb upstream of the transcriptional start site, is necessary and sufficient to mediate strong transcriptional activation by CYS3; moreover, site C was able to function equally well when it was located at variable distances upstream of the cys-14 gene. Site B, located 1 kb upstream, alone is able to support a moderate degree of cys-14 expression. Site A is not required and does not appear to play any functional role in cys-14 expression, even though it is in close proximity to the transcriptional start site. The presence of multiple copies of CYS3-binding elements A or B in the cys-14 promoter results in a parallel increase of regulated gene expression. When a transforming cys-14 gene becomes integrated at ectopic locations in the host genome, it can be expressed in an unregulated fashion, presumably by coming under the control of other promoter elements. Our results also suggested that at least one enzyme in the sulphate catabolic pathway requires a functional CYS3 protein for expression.