The eukaryotic CMG (Cdc45, Mcm2-7, GINS) helicase consists of the Mcm2-7 hexameric ring along with five accessory factors. The Mcm2-7 heterohexamer, like other hexameric helicases, is shaped like a ring with two tiers, an N-tier ring composed of the N-terminal domains, and a C-tier of C-terminal domains; the C-tier contains the motor. In principle, either tier could translocate ahead of the other during movement on DNA. We have used cryo-EM single-particle 3D reconstruction to solve the structure of CMG in complex with a DNA fork. The duplex stem penetrates into the central channel of the N-tier and the unwound leading single-strand DNA traverses the channel through the N-tier into the C-tier motor, 5′-3′ through CMG. Therefore, the N-tier ring is pushed ahead by the C-tier ring during CMG translocation, opposite the currently accepted polarity. The polarity of the N-tier ahead of the C-tier places the leading Pol e below CMG and Pol α-primase at the top of CMG at the replication fork. Surprisingly, the new N-tier to C-tier polarity of translocation reveals an unforeseen quality-control mechanism at the origin. Thus, upon assembly of head-to-head CMGs that encircle doublestranded DNA at the origin, the two CMGs must pass one another to leave the origin and both must remodel onto opposite strands of single-stranded DNA to do so. We propose that head-to-head motors may generate energy that underlies initial melting at the origin.CMG helicase | DNA replication | DNA polymerase | origin initiation | replisome R eplicative helicases are hexameric rings in all domains of life (1-3). In bacteria and archaea, the replicative helicase is a homohexamer and encircles single-strand (ss) DNA at a replication fork. Some viral and phage replicative helicases are also ring-shaped hexamers, including bovine papilloma virus (BPV) E1, simian virus 40 (SV40) large T-antigen (T-Ag), and the T4 and T7 phage helicases. Unlike other replicative helicases, the eukaryotic replicative Mcm2-7 helicase is composed of six nonidentical but homologous Mcm subunits that become activated upon assembly with five accessory factors (Cdc45 and GINS tetramer) to form the 11-subunit CMG (Cdc45, Mcm2-7, GINS) (4-6). Numerous studies have outlined the process that forms CMG at origins in which the Mcm2-7 heterohexamer is loaded onto DNA as an inactive double hexamer in G1 phase, and becomes activated in S phase by several initiation proteins and cell-cycle kinases that assemble Cdc45 and GINS onto Mcm2-7 to form the active CMG helicases (7-9).Helicases assort into six superfamilies (SF1-SF6) based on sequence alignments (10). The SF1 and SF2 helicases are generally monomeric and the SF3-SF6 helicases are hexameric rings used in DNA replication and other processes. The bacterial SF4 and SF5 helicases contain RecA-based motors and translocate 5′-3′, whereas the eukarytic SF3 and SF6 helicases contain AAA+ (ATPases associated with diverse cellular activities)-based motors and translocate 3′-5′ (3, 10). Examples of well-studied hexameric helicases include t...