On the way to designing customized products as one of the core activities of Industry 4.0, the strategy of computational design emerges as a unique design process due to its flexibility and simplicity. More specifically, the aforementioned strategy is concerned with the study of brand identity and its description in the development of commercial industrial products. The proposed design approach is focused on the study of branded product forms following computational design methodologies, i.e., employing textual or/and visual programming languages. The paper presents an overview of in-depth research studies which deal with the systematic way of creation, evolution, and transformation of industrial products with modern digital tools. Through the review, 100 studies have been analyzed over the last 15 years. The background of this research includes definitions from the specific four pillars of the modern theory of industrial design, e.g., product design, digital design, visual representation, and product identity. Furthermore, the current paper combines the use of computational design with specific parameters of visual brand elements in order to develop a methodological tool for the mass customization of industrial products. Moreover, the proposed framework offers a great deal of flexibility in both design and manufacturing, while many design alternatives could become available in a very short time. Finally, the impact of this paper is the correlation between computational design techniques and the theoretical background of brand identity principles (i.e., shapes, geometries, styles, textures, colors, and materials) for inspiring novel ideas among engineers, designers, and marketers.