Low concentrations of endogenous carbon monoxide (CO), generated primarily through degradation of heme from hemeproteins, have been shown to maintain physiological function of organs and to exert cytoprotective effects. However, high concentrations of carboxyhemoglobin (COHb), formed by CO binding to hemoglobin, potentially prevent adequate O 2 delivery to tissues by lowering arterial O 2 content. Elevated heme-protein concentrations, as found in marine mammals, are likely associated with greater heme degradation, more endogenous CO production and, consequently, elevated COHb concentrations. Therefore, we measured COHb in elephant seals, a species with large blood volumes and elevated hemoglobin and myoglobin concentrations. The levels of COHb were positively related to the total hemoglobin concentration. The maximum COHb value was 10.4% of total hemoglobin concentration. The mean (±s.e.m.) value in adult seals was 8.7±0.3% (N=6), while juveniles and pups (with lower heme-protein contents) had lower mean COHb values of 7.6±0.2% and 7.1±0.3%, respectively (N=9 and N=9, respectively). Serial samples over several hours revealed little to no fluctuation in COHb values. This consistent elevation in COHb suggests that the magnitude and/or rate of heme-protein turnover is much higher than in terrestrial mammals. The maximum COHb values from this study decrease total body O 2 stores by 7%, thereby reducing the calculated aerobic dive limit for this species. However, the constant presence of elevated CO in blood may also protect against potential ischemia-reperfusion injury associated with the extreme breath-holds of elephant seals. We suggest the elephant seal represents an ideal model for understanding the potential cytoprotective effects, mechanisms of action and evolutionary adaptation associated with chronically elevated concentrations of endogenously produced CO.
KEY WORDS: Calculated aerobic dive limit, Carbon monoxide, Hemoglobin absorption spectra, Marine mammal, Oxygen stores
INTRODUCTIONCarbon monoxide (CO) is often classified as a strictly toxic gas, depriving the body of oxygen (O 2 ) by binding to heme-proteins such as hemoglobin and forming carboxyhemoglobin (COHb) (Weaver, 2009). Deleterious symptoms (e.g. headache, nausea and shortness of breath) of CO-driven hypoxia are typically seen when COHb values reach ≥20% of total hemoglobin concentration, and death is associated with values of 50-80% (Stewart, 1975;Weaver, 2009 storage capacity (decreased arterial O 2 content), thus limiting mitochondrial respiration. However, CO is also generated endogenously in low concentrations, and functions in neurotransmission and in protection of tissues and cells against inflammation, apoptosis and ischemia-reperfusion injuries (Snyder et al., 1998; Kevin and Laffey, 2008;Mustafa et al., 2009; Kajimura et al., 2010;Prabhakar, 2012). Therefore, low concentrations of CO can provide beneficial and therapeutic effects up to a specific concentration, at which elevated CO then leads to detrimental effects from reduce...