Abstract-A model predictive control law is given by the solution to a parametric optimization problem that can be precomputed offline and provides an explicit map from state to control input. In this paper, an algorithm is introduced based on wavelet multiresolution analysis that returns a low complexity explicit model predictive control law built on a hierarchy of second order interpolets. The resulting interpolation is shown to be everywhere feasible and continuous. Further, tests to confirm stability and to compute a bound on the performance loss are introduced. Since the controller approximation is built on a grid hierarchy, convergence to a stabilizing control law is guaranteed and the evaluation of the control law in real-time systems is naturally fast and runs in a bounded logarithmic time. Two examples are provided; A two-dimensional example with an evaluation speed of 31 ns and a four-dimensional example with an evaluation speed of 119 ns.