Background: Argiope bruennichi, the European wasp spider, has been studied intensively as to sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies.Findings: We generated, de novo, a 1.67Gb genome assembly of A. bruennichi using 21.5X PacBio sequencing, polished with 30X Illumina paired-end sequencing data, and proximity ligation (Hi-C) based scaffolding. This resulted in an N50 scaffold size of 124Mb and an N50 contig size of 288kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high quality of the assembly.Conclusions: We present the first chromosome-level genome assembly in the class Arachnida. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation in A. bruennichi, as well as on several interesting topics in Arachnids, such as the genomic architecture of traits, whole genome duplication and the genomic mechanisms behind silk and venom evolution.