Phenotypic plasticity is thought to be an important driver of diversification and adaptation to environmental variation, yet the genomic mechanisms mediating plastic trait development and evolution remain poorly understood. The Scarabaeinae, or true dung beetles, are a species-rich clade of insects recognized for their highly diversified nutrition-responsive development including that of cephalic horns—evolutionarily novel, secondary sexual weapons that exhibit remarkable intra- and interspecific variation. Here, we investigate the evolutionary basis for horns as well as other key dung beetle traits via comparative genomic and developmental assays. We begin by presenting chromosome-level genome assemblies of three dung beetle species in the tribe Onthophagini (> 2500 extant species) including Onthophagus taurus, O. sagittarius, and Digitonthophagus gazella. Comparing these assemblies to those of seven other species across the order Coleoptera identifies evolutionary changes in coding sequence associated with metabolic regulation of plasticity and metamorphosis. We then contrast chromatin accessibility in developing head horn tissues of high- and low-nutrition O. taurus males and females and identify distinct cis-regulatory architectures underlying nutrition- compared to sex-responsive development, including a large proportion of recently evolved regulatory elements sensitive to horn morph determination. Binding motifs of known and new candidate transcription factors are enriched in these nutrition-responsive open chromatin regions. Our work highlights the importance of chromatin state regulation in mediating the development and evolution of plastic traits, demonstrates gene networks are highly evolvable transducers of environmental and genetic signals, and provides new reference-quality genomes for three species that will bolster future developmental, ecological, and evolutionary studies of this insect group.