Main body of text: 5983 words 2Epithelia and endothelia separate different tissue compartments and protect multicellular organisms form the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Here, we discuss recent advances in our understanding of the molecular architecture and cellular functions of tight junctions.Microscopists in the 19 th century described the paracellular space between neighbouring cells within an epithelial sheet to be sealed by a "terminal bar", a structure later resolved by electron microscopy into a composite of distinct cell-cell junctions that is now called the epithelial junctional complex and is formed by tight junctions, adherens junctions and desmosomes 1,2 . As the former two junctions are more tightly associated and often reside at the apical end of the lateral membrane, they are often referred to as the apical junctional complex (however, in endothelia, tight junctions and adherens junctions can be intercalated) (Fig. 1). Tight junctions are essential for barrier formation, and their primary physiological role is to function as paracellular gates that restrict diffusion on the basis of size and charge. Selective paracellular diffusion is an essential process for the maintenance of homoeostasis in organs and tissues. Tight junctions have long been the most enigmatic of all adhesion complexes and eluded a detailed molecular and functional analysis due to their complex architecture. Recent years have witnessed the identification of a large array of components associated with tight junctions implicating these junctions in an unexpected range of different functions, thereby challenging the traditional model, in which tight junctions are considered a simple diffusion barrier formed by a rigid molecular complex. In line with these various functions, mutations in genes encoding tight junction proteins have been linked to a range of inherited human diseases. Additionally, tight junction components are known to be targeted by a number of pathogenic bacteria and viruses, which hijack tight junction proteins to enter and infect cells, or target junctional signalling mechanisms to cross tissue barriers. Although tight junctions are a vertebrate junction, many of their components and functions are evolutionarily conserved (Box 1).The main purpose of this review is to examine the recent advances in the unravelling of the molecular architecture of tight junctions and understanding their functions. We will discuss recent exciting insights into how tight junctions function as signalling platforms that guide cell behaviour and differen...