Abstract. Multi-year ground-based remote-sensing datasets acquired with the Leipzig Aerosol and Cloud Remote Observations System (LACROS) at three sites: a highly polluted central European site (Leipzig, Germany), a polluted and strongly dust-influenced eastern Mediterranean site (Limassol, Cyprus), and a clean marine site in the southern mid-latitudes (Punta Arenas, Chile) are used to contrast ice formation in shallow stratiform liquid clouds. These unique, long-term datasets at key sites of aerosol-cloud interaction provide a deeper insight into cloud microphysics. The influence of temperature, aerosol load, boundary-layer coupling and gravity wave motion on ice formation is investigated. With respect to previous studies of regional contrasts in the properties of mixed-phase clouds our study contributes the following new aspects: (1) Sampling aerosol optical parameters as a function of temperature, the average backscatter coefficient at supercooled temperatures is within a factor of 3 at all three sites. (2) Ice formation was found to be more frequent for cloud layers with cloud top temperatures above −15 °C than indicated by prior lidar-only studies at all sites. A virtual lidar-detection threshold of IWC needs to be considered in order to bring radar-lidar-based studies in agreement with lidar-only studies. (3) At similar temperatures, cloud layers which are coupled to the aerosol-laden boundary layer show more intense ice formation than de-coupled clouds. (4) Liquid layers formed by gravity waves were found to bias the phase occurrence statistics below −15 °C. By applying a novel gravity wave detection approach using vertical velocity observations within the liquid-dominated cloud top, wave clouds can be classified and excluded from the statistics. After considering boundary layer and gravity-wave influences, Punta Arenas shows lower fractions of ice containing clouds by 0.1 to 0.4 absolute difference at temperatures between −24 and −8 °C. These differences are potentially caused by the contrast in the INP reservoir between the different sites.