With increasing demand of agricultural production and as the peak in global production will occur in the next decades, phosphorus (P) is receiving more attention as a nonrenewable resource (Cordell et al., 2009;Gilbert, 2009). One unique characteristic of P is its low availability due to slow diffusion and high fixation in soils. All of this means that P can be a major limiting factor for plant growth. Applications of chemical P fertilizers and animal manure to agricultural land have improved soil P fertility and crop production, but caused environmental damage in the past decades. Maintaining a proper P-supplying level at the root zone can maximize the efficiency of plant roots to mobilize and acquire P from the rhizosphere by an integration of root morphological and physiological adaptive strategies. Furthermore, P uptake and utilization by plants plays a vital role in the determination of final crop yield. A holistic understanding of P dynamics from soil to plant is necessary for optimizing P management and improving P-use efficiency, aiming at reducing consumption of chemical P fertilizer, maximizing exploitation of the biological potential of root/rhizosphere processes for efficient mobilization, and acquisition of soil P by plants as well as recycling P from manure and waste. Taken together, overall P dynamics in the soilplant system is a function of the integrative effects of P transformation, availability, and utilization caused by soil, rhizosphere, and plant processes. This Update focuses on the dynamic processes determining P availability in the soil and in the rhizosphere, P mobilization, uptake, and utilization by plants. It highlights recent advances in the understanding of the P dynamics in the soil/rhizosphere-plant continuum.