2016
DOI: 10.2139/ssrn.2876526
|View full text |Cite
|
Sign up to set email alerts
|

The Dynamic Factor Network Model with an Application to Global Credit-Risk

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 35 publications
(49 reference statements)
0
4
0
Order By: Relevance
“…They describe the link dynamics with a Tobit model, allowing for deterministic or stochastic time-varying parameters that take into account the possibility of structural changes in network dynamics. Brauning and Koopman [17] have applied the dynamic factors model to the case of dynamic networks. Depending on the number of factors, the model allows to reduce the dimensionality of the problem and to describe cross-sectional dependencies in network data.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…They describe the link dynamics with a Tobit model, allowing for deterministic or stochastic time-varying parameters that take into account the possibility of structural changes in network dynamics. Brauning and Koopman [17] have applied the dynamic factors model to the case of dynamic networks. Depending on the number of factors, the model allows to reduce the dimensionality of the problem and to describe cross-sectional dependencies in network data.…”
Section: Introductionmentioning
confidence: 99%
“…the tendency of a link that does (or does not) exist at time t − 1 to continue existing (or not existing) at time t, similarly to [5]. From the other side, we describe the stochastic dynamics of node-specific latent variables that we call fitnesses, with a similar aim of [17,18]. The node fitness describes the tendency of a node in creating links and its evolution determines how the degree of the node changes in time.…”
Section: Introductionmentioning
confidence: 99%
“…Wang (2021) suggest a deep learning approach. Alternatively, network models could be used to mimic the often observed core-periphery structure of the financial sector (Bräuning and Koopman, 2016;Andrieş et al, 2022).…”
Section: Discussionmentioning
confidence: 99%
“…Billio et al (2012) offer an early econometric model which quantifies interconnectedness through principal components and implied networks based on Granger-causality tests. Bräuning and Koopman (2016) extend the idea with time-varying heterogeneity in the link formation between banks using CDS spreads of US and European institutions, thus aiming to capture the dynamic formation of potential core-periphery clusters, which are natural for the financial sector. Moratis and Sakellaris (2021) on the other hand use a panel VAR model to decompose the transmission of systemic shocks across a universe of global banks.…”
Section: Related Literaturementioning
confidence: 99%