Biological aspects and global demand for aquarium promote seahorses as new species with high potential for commercial purposes; however, the low newborn survival rate represents the main bottleneck of seahorses farming. In this study, the organogenesis of the Hippocampus reidi was analysed from release until the 30th day after birth, using histological and histochemical approaches. To study the stages of their early life, 360 individuals were killed, sectioned, and stained with haematoxylin and eosin, periodic acid-Schiff, and Sudan Black B techniques. At birth, mouth and anus were open, the swim bladder inflated, and the visual system highly developed. Among the results, it was emphasized the presence of the yolk sac until the 2nd day after birth, the loops of the intestine to accommodate its elongation, and the ability of the larvae to absorb lipids in the anterior and posterior tract of the intestine. A short time (7/8 days) between reabsorption of yolk sac and formation of gonads was registered, with primordial follicles visible from the 10th day after birth. For the first time, organogenesis in H. reidi was described in detail; seahorses underwent a marked metamorphosis, and the indirect development observed in this species lead up to reconsider the term "juvenile" used for H. reidi during this period.