A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time-dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments. uncovered anomalous diffusion of the power-law formwith the anomalous diffusion exponent 0<α<1 and the generalised diffusion coefficient D α [11], for the motion of charge carriers in amorphous semiconductors [12]. With the advance of modern microscopy techniques, in particular, superresolution microscopy, as well as massive progress in supercomputing, anomalous diffusion of the type (3) has been reported in numerous complex and biological systems [13,14]. Thus, subdiffusion with 0<α<1 was observed for submicron tracers in the crowded cytoplasm of biological cells [15][16][17][18][19] as well as in artificially crowded environments [20][21][22][23]. Further reports of subdiffusion come from the motion of proteins embedded in the membranes of living cells [24][25][26]. Subdiffusion is also seen in extensive simulations studies, for instance, of lipid bilayer membranes [27][28][29][30] and relative diffusion in proteins [31]. Superdiffusion, due to active motion of molecular motors, was observed in various biological cell types for both introduced and endogenous tracers [16,17,32,33].Most of the anomalous diffusion phenomena mentioned here belong to two main classes of anomalous diffusion: (i) the class of continuous time random walk processes, in which scale-free power-law waiting times in between motion events give rise to the law (3) [12,34], along with a stretched Gaussian displacement probability density G(x, t) [11,12,34] as well as weak ergodicity breaking and ageing [35,36]. We note that similar effects of non-Gaussianity, weak non-ergodicity, and ageing also occur in spatially heterogeneous diffusion processes [37][38][39][40]. (ii) The secon...