In this work, the detailed studies of electron spin resonance (ESR) and overhauser-enhanced magnetic resonance imaging (OMRI) were carried out for permeable nitroxyl spin probe, MC-PROXYL as a function of agent concentration in liposomal solution. In order to compare the impermeable nature of nitroxyl radical, the study was also carried out only at 2 mM concentration of carboxy-PROXYL. The ESR parameters were estimated using L-band and 300 MHz ESR spectrometers. The line width broadening was measured as a function of agent concentration in liposomal solution. The estimated rotational correlation time is proportional to the agent concentration, which indicates that less mobile nature of nitroxyl spin probe in liposomal solution. The partition parameter and permeability values indicate that the diffusion of nitroxyl spin probe distribution into the lipid phase is maximum at 2 mM concentration of MC-PROXYL. The dynamic nuclear polarization (DNP) parameters such as DNP factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for 2 mM MC-PROXYL in 400 mM liposomal dispersion. The spin lattice relaxation time was shortened in liposomal solution, which leads to the high relaxivity. Reduction in coupling factor is due to less interaction between the electron and nuclear spins, which causes the reduction in enhancement. The leakage factor increases with increasing agent concentration. The increase in DNP enhancement was significant up to 2 mM in liposomal solution. These results paves the way for choosing optimum agent concentration and OMRI scan parameters used in intra and extra membrane water by loading the liposome vesicles with a lipid permeable nitroxyl spin probes in OMRI experiments.