The gef gene has cell-killing functions in Escherichia coli. To evaluate the feasibility of using this gene as a new strategy for cancer therapy, we transfected it in MCF-7 cells derived from breast cancer (MCF-7TG). The gef gene was cloned in a pMAMneo vector under the control of a mouse mammary tumour virus promoter, inducible by dexamethasone (Dex), and was transfected with liposomes. After selection and induction, expression of the gef gene was confirmed by reverse transcription -polymerase chain reactions (RT -PCR) and Western blot. Cell viability was determined with a haemocytometre and the sulphorodamine B colorimetric assay, and the cell cycle was studied by propidium iodide (PI) staining. Annexin V-FITC and PI assays were used to evaluate apoptosis, which was confirmed by electron microscopy. In comparison with MCF-7 parental cells and MCF-7 cells transfected with an empty vector, MCF-7TG cells induced with Dex showed a significant decrease in proliferation rate, which was associated with evidence of apoptosis. Morphological findings confirmed apoptosis and showed a typical pattern of mitochondrial dilation. Furthermore, the cell cycle was characterised by premature progression from G 1 to S phase and G 2 delay. Our results show that the gef gene was able to decrease proliferation in a breast cancer cell line, and induce apoptosis. These findings suggest that the gef gene is a potential candidate for tumour therapy.