Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundThe occurrence and progression of breast cancer are closely linked to copper ion homeostasis. Both copper deficiency and excess can inhibit breast cancer growth, while copper transport systems may contribute to its progression by regulating copper ion transport and the activity of associated proteins. However, a comprehensive review of the roles and applications of copper transport systems in breast cancer remains limited. In this study, we summarize the workflow of copper transport systems and the dual role of copper in cancer, highlighting the contributions of specific members of the copper transport system to breast cancer.MethodsA comprehensive search of the PubMed database was conducted to identify articles published over the past 30 years that focus on the relationship between copper transport system members and breast cancer. The findings were synthesized to elucidate the roles and mechanisms of these transporters in the onset and progression of breast cancer.ResultsWe identified 13 members of the copper transport system associated with the occurrence, progression, and mortality of breast cancer, including SLC31A1, DMT1, ATP7A, ATP7B, MTs, GSH, ATOX1, CCS, COX17, SCO1, SCO2, and COX11. Our findings revealed that, apart from STEAP, the remaining 12 members were overexpressed in breast cancer. These members influence the onset, progression, and cell death of breast cancer by modulating biological pathways such as intracellular copper ion levels and ROS. Notably, we observed for the first time that depletion of the copper storage protein GSH leads to increased copper ion accumulation, resulting in cuproptosis in breast cancer cells.ConclusionBy integrating the members of the copper transport system in breast cancer, we offer novel insights for the treatment of breast cancer and copper‐related therapies.
BackgroundThe occurrence and progression of breast cancer are closely linked to copper ion homeostasis. Both copper deficiency and excess can inhibit breast cancer growth, while copper transport systems may contribute to its progression by regulating copper ion transport and the activity of associated proteins. However, a comprehensive review of the roles and applications of copper transport systems in breast cancer remains limited. In this study, we summarize the workflow of copper transport systems and the dual role of copper in cancer, highlighting the contributions of specific members of the copper transport system to breast cancer.MethodsA comprehensive search of the PubMed database was conducted to identify articles published over the past 30 years that focus on the relationship between copper transport system members and breast cancer. The findings were synthesized to elucidate the roles and mechanisms of these transporters in the onset and progression of breast cancer.ResultsWe identified 13 members of the copper transport system associated with the occurrence, progression, and mortality of breast cancer, including SLC31A1, DMT1, ATP7A, ATP7B, MTs, GSH, ATOX1, CCS, COX17, SCO1, SCO2, and COX11. Our findings revealed that, apart from STEAP, the remaining 12 members were overexpressed in breast cancer. These members influence the onset, progression, and cell death of breast cancer by modulating biological pathways such as intracellular copper ion levels and ROS. Notably, we observed for the first time that depletion of the copper storage protein GSH leads to increased copper ion accumulation, resulting in cuproptosis in breast cancer cells.ConclusionBy integrating the members of the copper transport system in breast cancer, we offer novel insights for the treatment of breast cancer and copper‐related therapies.
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB‐ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28’s multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial‐to‐mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28’s complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.