Under the assumption that jets explode all core collapse supernovae (CCSNe), I classify 14 CCSN remnants (CCSNRs) into five groups according to their morphology as shaped by jets, and attribute the classes to the specific angular momentum of the pre-collapse core. Point-symmetry (one CCSNR): According to the jittering jets explosion mechanism (JJEM) when the pre-collapse core rotates very slowly, the newly born neutron star (NS) launches tens of jet-pairs in all directions. The last several jet-pairs might leave an imprint of several pairs of “ears,” i.e., a point-symmetric morphology. One pair of ears (eight CCSNRs): More rapidly rotating cores might force the last pair of jets to be long-lived and shape one pair of jet-inflated ears that dominates the morphology. S-shaped (one CCSNR): The accretion disk might precess, leading to an S-shaped morphology. Barrel-shaped (three CCSNRs): Even more rapidly rotating pre-collapse cores might result in a final energetic pair of jets that clear the region along the axis of the pre-collapse core rotation and form a barrel-shaped morphology. Elongated (one CCSNR): A very rapidly rotating pre-collapse core forces all jets to be along the same axis such that the jets are inefficient in expelling mass from the equatorial plane and the long-lasting accretion process turns the NS into a black hole. The two new results of this study are the classification of CCSNRs into five classes based on jet-shaped morphological features, and the attribution of the morphological classes mainly to the pre-collapse core rotation in the frame of the JJEM.