Day (0600-1800 UTC) maximum and night (1800-0600 UTC) minimum temperature forecasts as well as prediction of the occurrence of precipitation are evaluated for different sites in Estonia: southern coast of the Gulf of Finland (Tallinn), West-Estonian archipelago (Kuressaare), and inland Estonia (Tartu). The forecasts are collected from Estonian weather service. Several traditional verification methods are used, first of all reliability (root mean square error (RMSE)) and validity (mean error (ME)). Detailed analysis is carried out by means of the contingency tables that enable the user to calculate percent correct, percent underestimated, and percent overestimated. The contingency tables enable the user to calculate conditional probabilities of the realizations of certain forecasts. The paper is user-oriented and does not analyse the forecast technique. On the other hand, attention is drawn to the subjectivity of such evaluation, as the results may depend on the forecast presentation style and/or on the choice of the features of the meteorological parameter under consideration. For the current case study (the coldest hour during night and the warmest hour during day chosen to validate the temperature forecast, the temperature validation bin size 3 degrees, precipitation forecast validated in three categories based on the 12 h precipitation sums) one may say that the RMSE of the shortterm prediction of night minimum and day maximum temperature is 1.5 °C…3.1 °C. It was also noticed that Estonian weather service predicts lower night minimum temperature than it follows in reality. The skill of the temperature forecast is estimated by comparison of its RMSE with that of the persistence forecast (next night/day will be similar to the previous one). The RMSE of the 1st day/night forecast is by 1.3 °C…1.4 °C less for Tallinn and Tartu and 0.3 °C…0.8 °C for Kuressaare than that of the persistence forecast. For the precipitation forecast, percent correct is 60…70, the probability that dry weather forecast is followed by no precipitation is 70%…80%. At the end of the paper the long-term forecasts of two international weather portals www.gismeteo.ru (Russia) and www.weather.com (USA) are briefly analysed.