Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Environmental psychologists have established multiple psychological benefits of interaction with natural, compared to urban, environments on emotion, cognition, and attention. Yet, given the increasing urbanisation worldwide, it is equally important to understand how differences within different urban environments influence human psychological experience. We developed a laboratory experiment to examine the psychophysiological effects of the physical (outdoor or indoor) and social (crowded versus uncrowded) environment in healthy young adults, and to validate the use of mobile electroencephalography (EEG) and electrodermal activity (EDA) measurements during active walking. Participants (N = 42) were randomly assigned into a walking or a standing group, and watched six 1-min walk-through videos of green, urban indoor and urban outdoor environments, depicting high or low levels of social density. Self-reported emotional states show that green spaces is perceived as more calm and positive, and reduce attentional demands. Further, the outdoor urban space is perceived more positively than the indoor environment. These findings are consistent with earlier studies on the psychological benefits of nature and confirm the effectiveness of our paradigm and stimuli. In addition, we hypothesised that even short-term exposure to crowded scenes would have negative psychological effects. We found that crowded scenes evoked higher self-reported arousal, more negative self-reported valence, and recruited more cognitive and attentional resources. However, in walking participants, they evoked higher frontal alpha asymmetry, suggesting more positive affective responses. Furthermore, we found that using recent signal-processing methods, the EEG data produced a comparable signal-to-noise ratio between walking and standing, and that despite differences between walking and standing, skin-conductance also captured effectively psychophysiological responses to stimuli. These results suggest that emotional responses to visually presented stimuli can be measured effectively using mobile EEG and EDA in ambulatory settings, and that there is complex interaction between active walking, the social density of urban spaces, and direct and indirect affective responses to such environments.
Environmental psychologists have established multiple psychological benefits of interaction with natural, compared to urban, environments on emotion, cognition, and attention. Yet, given the increasing urbanisation worldwide, it is equally important to understand how differences within different urban environments influence human psychological experience. We developed a laboratory experiment to examine the psychophysiological effects of the physical (outdoor or indoor) and social (crowded versus uncrowded) environment in healthy young adults, and to validate the use of mobile electroencephalography (EEG) and electrodermal activity (EDA) measurements during active walking. Participants (N = 42) were randomly assigned into a walking or a standing group, and watched six 1-min walk-through videos of green, urban indoor and urban outdoor environments, depicting high or low levels of social density. Self-reported emotional states show that green spaces is perceived as more calm and positive, and reduce attentional demands. Further, the outdoor urban space is perceived more positively than the indoor environment. These findings are consistent with earlier studies on the psychological benefits of nature and confirm the effectiveness of our paradigm and stimuli. In addition, we hypothesised that even short-term exposure to crowded scenes would have negative psychological effects. We found that crowded scenes evoked higher self-reported arousal, more negative self-reported valence, and recruited more cognitive and attentional resources. However, in walking participants, they evoked higher frontal alpha asymmetry, suggesting more positive affective responses. Furthermore, we found that using recent signal-processing methods, the EEG data produced a comparable signal-to-noise ratio between walking and standing, and that despite differences between walking and standing, skin-conductance also captured effectively psychophysiological responses to stimuli. These results suggest that emotional responses to visually presented stimuli can be measured effectively using mobile EEG and EDA in ambulatory settings, and that there is complex interaction between active walking, the social density of urban spaces, and direct and indirect affective responses to such environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.