Telephone: +61 (0)2 9850 2956
AbstractThe continuous flash suppression (CFS) task can be used to investigate what limits our capacity to become aware of visual stimuli. In this task, a stream of rapidly changing mask images to one eye initially suppresses awareness for a static target image presented to the other eye. Several factors may determine the breakthrough time from mask suppression, one of which is the overlap in representation of the target/mask categories in higher visual cortex.This hypothesis is based on certain object categories (e.g., faces) being more effective in blocking awareness of other categories (e.g., buildings) than other combinations (e.g., cars/chairs). Previous work found mask effectiveness to be correlated with category-pair high-level representational similarity. As the cortical representations of hands and tools overlap, these categories are ideal to test this further, as well as to examine alternative explanations. For our CFS experiments, we predicted longer breakthrough times for hands/tools compared to other pairs, due to the reported cortical overlap. In contrast, across three experiments, participants were generally faster at detecting targets masked by hands or tools compared to other mask categories. Exploring low-level explanations, we found that the category average for edges (e.g., hands have less detail compared to cars) was the best predictor for the data. This low-level bottleneck could not completely account for the specific category patterns and the hand/tool effects, suggesting there are several levels at which object category-specific limits occur. Given these findings, it is important that low-level bottlenecks for visual awareness are considered when testing higher-level hypotheses.