Mitochondria are the major organelles that produce reactive oxygen species (ROS) and the main target of ROS-induced damage as observed in various pathological states including aging. Production of NADPH required for the regeneration of glutathione in the mitochondria is critical for scavenging mitochondrial ROS through glutathione reductase and peroxidase systems. We investigated the role of mitochondrial NADP ؉ -dependent isocitrate dehydrogenase (IDPm) in controlling the mitochondrial redox balance and subsequent cellular defense against oxidative damage. We demonstrate in this report that IDPm is induced by ROS and that decreased expression of IDPm markedly elevates the ROS generation, DNA fragmentation, lipid peroxidation, and concurrent mitochondrial damage with a significant reduction in ATP level. Conversely, overproduction of IDPm protein efficiently protected the cells from ROS-induced damage. The protective role of IDPm against oxidative damage may be attributed to increased levels of a reducing equivalent, NADPH, needed for regeneration of glutathione in the mitochondria. Our results strongly indicate that IDPm is a major NADPH producer in the mitochondria and thus plays a key role in cellular defense against oxidative stress-induced damage.Cell damage induced by oxidative stress and reactive oxygen species (ROS) 1 has been implicated in several human diseases including aging, alcohol-mediated organ damage, neurodegenerative diseases, many types of cancers, cardiovascular diseases, and UV-mediated skin disorders (1). As one of the major sources of ROS (2), mitochondria are highly susceptible to oxidative damage. ROS can damage mitochondrial enzymes directly (3), and they can cause mutation in mitochondrial DNAs (4). At the same time, ROS can change the mitochondrial transmembrane potential (⌬m), which is indicative of mitochondrial membrane integrity (5) and precedes cell death induced by various toxic compounds and cytokines (6). Recent reports indicate that mitochondrial ROS cause apoptosis (7, 8) by activating various apoptotic effectors such as cytochrome c release, procaspase-2, procaspase-9, procaspase-3, and latent apoptosis-inducing factor, which is released from the mitochondria during apoptosis (9 -11). Another report also suggested that mitochondrial ROS directly caused apoptosis of T cells (12). It was also reported that tumor necrosis factor ␣ causes a rapid production of mitochondrial ROS (13) and that ceramide, an apoptotic stimulus, also plays a crucial role in tumor necrosis factor ␣-induced mitochondrial ROS generation (14). Furthermore, several other investigators demonstrated that ROS are involved in the signaling pathway of certain growth factors (15) and cytokines (16). In addition, mitochondrial ROS, under hypoxic conditions, activate the transcription of the genes for glycolytic enzymes as well as erythropoietin and vascular endothelial growth factor by upregulating a transcriptional factor, hypoxia-inducible factor 1 (17), suggesting that mitochondrial ROS mediate cross-talk b...