Accurate estimation of chlorophyll content is essential for understanding the growth status and optimizing the cultivation practices of Ginkgo, a dominant multi-functional tree species in China. Traditional methods based on chemical analysis for determining chlorophyll content are labor-intensive and time-consuming, making them unsuitable for large-scale dynamic monitoring and high-throughput phenotyping. To accurately quantify chlorophyll content in Ginkgo seedlings under different nitrogen levels, this study employed a hyperspectral imaging camera to capture canopy hyperspectral images of seedlings throughout their annual growth periods. Reflectance derived from pure leaf pixels of Ginkgo seedlings was extracted to construct a set of spectral parameters, including original reflectance, logarithmic reflectance, and first derivative reflectance, along with spectral index combinations. A one-dimensional convolutional neural network (1D-CNN) model was then developed to estimate chlorophyll content, and its performance was compared with four common machine learning methods, including Gaussian Process Regression (GPR), Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Random Forest (RF). The results demonstrated that the 1D-CNN model outperformed others with the first derivative spectra, achieving higher CV-R2 and lower RMSE values (CV-R2 = 0.80, RMSE = 3.4). Furthermore, incorporating spectral index combinations enhanced the model’s performance, with the 1D-CNN model achieving the best performance (CV-R2 = 0.82, RMSE = 3.3). These findings highlight the potential of the 1D-CNN model in strengthening the chlorophyll estimations, providing strong technical support for the precise cultivation and the fertilization management of Ginkgo seedlings.