Secondary aluminum ash (SAA) is a type of common solid waste which leads to pollution without treatment. Due to its chemical reactivity, the application of SAA to reactive powder concrete (RPC) may help solidify this solid waste while increasing its performance. However, RPC is usually in active service when used with steel bars. NaCl can corrode the steel bars when reinforced RPC is used in a coastal environment. In this study, the corrosion resistance of reinforced RPC was investigated. The specimens were exposed to an environment of NaCl with freeze–thaw cycles (F-Cs) and dry–wet alternations (D-As). The corresponding mass loss rates (MRs), the electrochemical impedance spectroscopy (EIS) curves and the dynamic modulus of elasticity (DME) were measured. The results show that the MR and the DME of reinforced RPC decrease with increasing values of F-C and D-A. F-C and D-A increases lead to increased electrical resistance (R). The real part value corresponding to the extreme point of the EIS curve is increased by 0~213.7% when the SAA is added. The relationship between the imaginary part and the real part of the EIS fits the quadratic function. The equivalent circuit of the reinforced RPC is obtained from the EIS curves. The R of the rust is calculated by using the equivalent circuit. The rust’s R decreases in the quadratic function with the mass ratio of the SAA. After 200 NaCl F-Cs, the MR, the DME and the R vary within the ranges of 23.4~113.6%, −2.93~−4.76% and 4.92~13.55%. When 20 NaCl D-As are finished, the MR, the DME and the R vary within the ranges of 34.7~202.8%, −13.21~−14.93% and 120.48~486.39%. The corrosion area rates are 2.3~68.7% and 28.7~125.6% higher after exposure to 200 NaCl F-Cs and 20 NaCl D-As. When the SAA is mixed, the MR is decreased by 0~13.12%, the DME increases by 0~3.11%, the R of the reinforced RPC increases by 26.01~152.43% and the corrosion area rates are decreased by 21.39~58.62%. This study will provide a novel method for solidifying SAA while improving the chlorine salt resistance of RPC.