In this work, organic concerted companion (CC) dyes CCOD-1 and CCOD-2 were constructed by covalently linking two organic dye units with complementary absorption spectra. Both CC dyes exhibited intense absorption from 300 to 650 nm with the band edges extended to 700 nm. These CC dyes were used to fabricate dye-sensitized solar cells (DSSCs), and the photovoltaic performance was investigated using different light sources. CCOD-2 possessed bulkier outer shelter than CCOD-1 owing to the longer carbon chains (C 12 ) at the donor moiety, and thus it had stronger anti-aggregation and anti-charge-recombination ability. Under simulated sunlight (AM1.5G), CCOD-2 exhibited enhanced photovoltaic behavior with an open-circuit voltage (V OC ) of 759 mV, short-circuit current density (J SC ) of 19.23 mA • cm À 2 , and power conversion efficiency (PCE) of 10.4 %, respectively. Notably, under the illumination of the indoor T5 fluorescent lamp (2500 lux), CCOD-2 afforded an enhanced PCE of 28.0 % with remarkable V OC and J SC of 692 mV and 0.424 mA cm À 2 , respectively. Notably, the PCE achieved for CCOD-2 outperformed those of the reference sensitizer N719 and our previously reported CC dyes XW61 and XW70-C8 under the same indoor lamp conditions. In summary, the novel organic CC dyes developed in this work were demonstrated to be promising for fabricating DSSCs to efficiently harvest the energy of indoor lamps.