A liquid chromatographic mass spectrometric (LC-MS) assay for the quantification of nicotine and cotinine in human specimens was developed. Human serum and urine (100 μL) were subjected to liquid-liquid extraction. For glucuronidated cotinine, serum was alkalinized and hydrolyzed before extraction. The dried samples were reconstituted and run using gradient flow reverse-phase liquid chromatography with MS detection. The ions utilized for quantification of nicotine, cotinine and milrinone (internal standard) were 162.8, 176.9 and 211.9 m/z, respectively. The mean recoveries were over 80% for cotinine and nicotine with excellent linearity between nominal concentrations and peak area ratios, over a wide concentration range. The percentage coefficient of variation and mean error of the inter- and intra-day validations were <15% for nicotine and cotinine. Analysis of serum from cardiac patients receiving amiodarone suggested that a number of patients were either active smokers or exposed to second-hand smoke. Significant concentrations of nicotine and cotinine were measured in the urine of a known smoking volunteer. The method was highly specific, sensitive and applicable as a tool in detecting and monitoring the passive exposure to tobacco smoke using small specimen volumes (0.1 mL).