Bees are important pollinators worldwide, promoting sustainability in agriculture and natural ecosystems. Moreover, honey bees produce a variety of honey bee products (beehive products). Honey is the main edible bee product. The consumption of pollen, bee bread, royal jelly, and propolis is becoming more popular nowadays. All these products are characterized by high nutritional value and/or bioactivity. A high microbial diversity has been reported in bees and beehive products, forming distinct microbial communities. The honey bee gut microbiome actively promotes good health and nutrient availability for the host. Furthermore, it prevents food spoilage and contributes to the maintenance of good hygiene conditions in the hive. Pseudomonads are often reported in investigations on bee and bee product microbiomes. Diverse Pseudomonas species demonstrate high metabolic adaptability, producing a wide range of bioactive enzymes and secondary metabolites. Several studies have provided evidence that Pseudomonads might play a role in bee well-being and the bioactivity exerted by honey bee products, though further research is warranted to fully understand the effects and mechanisms. The aim of this narrative review is to highlight the importance of Pseudomonads in the context of up-to-date knowledge regarding the bee and bee product microbiomes.