In order to study the condensation and heat transfer characteristics of similar microstructure surfaces, two similar microstructure surfaces, cylindrical and circular, were fabricated by femtosecond laser technology on a 0.5 mm silicon wafer. The cylindrical surface is superhydrophobic when the contact angle is more than 150°, and the circular surface is hydrophilic when the contact angle is less than 90°. The difference in condensation heat transfer characteristics between superhydrophobic and hydrophilic microstructures was analyzed, and a visual condensation experimental platform was built. Experimental research showed that: At the same flow rate, the heat transfer coefficient of the superhydrophobic surface and the hydrophilic surface decreases significantly with the increase of the surface subcooling degree, but the heat transfer coefficient of the cylindrical surface is still much larger than that of the circular surface. In addition, the heat transfer performance of the hydrophobic microstructure surface is better than that of the hydrophilic surface at medium and high-speed cooling water flow rates. Although the surface microstructures are similar in shape, the heat transfer performance of cylindrical microstructures is much better than that of circular microstructures under the same conditions, and the heat flux of cylindrical microstructures is 2.2 times that of circular microstructures.