This paper investigates the effect of cutting parameters on the surface roughness and cutting force of titanium alloy Ti-6Al-4V ELI when turning using PVD TiAlN coated tool in dry environment. Taguchi L9 orthogonal array design of experiment was used for the turning experiment 2 factors and 3 levels. Turning parameters studied were cutting speed (50, 65, 80 m/min), feed rate (0.08, 0.15, 0.2 mm/rev) and depth of cut 0.5 mm constant. Linear and second order model of the surface roughness and cutting force has been developed in terms of cutting speed and feed. The results show that the feed rate was the most impact factor controlling the cutting force and surface roughness produced. MINITAB 17software was used to develop a linear and second order model of surface roughness and cutting force. Optimum condition was at 66.97 m/min of cutting speed, 0.08 mm/rev of feed rate. Surface roughness 0.57μm and cutting force 54.02 N were obtained at the optimum condition. A good agreement between the experimental and predicted surface roughness and cutting force were observed.