For coastal regions on the margin of a subduction zone, near-field megathrust earthquakes are the source of the most extreme tsunami hazards, and are important to handle properly as one aspect of any Probabilistic Tsunami Hazard Assessment. Typically, great variability in inundation depth at any point is possible due to the extreme variation in extent and pattern of slip over the fault surface. In this context, we present an approach to estimating inundation depth probabilities (in the form of hazard curves at a set of coastal locations) that consists of two components. The first component uses a Karhunen-Loève expansion to express the probability density function (PDF) for all possible events, with PDF parameters that are geophysically reasonable for the Cascadia Subduction Zone. It is then easy and computationally cheap to generate a large N number of samples from this PDF; doing so and performing a full tsunami inundation simulation for each provides a brute force approach to estimating probabilities of inundation. However, to obtain reasonable results, particularly for extreme flooding due to rare events, N would have to be so large as to make the tsunami simulations prohibitively expensive. The second component tackles this difficulty by using importance sampling techniques to adequately sample the tails of the distribution and properly re-weight the probability assigned to the resulting realizations, and by grouping the realizations into a small number of clusters that we believe will give similar inundation patterns in the region of interest. In this approach, only one fine-grid tsunami simulation need be computed from a representative member of each cluster. We discuss clustering based on proxy quantities that are cheap to compute over a large number of realizations, but that can identify a smaller number of clusters of realizations that will have similar inundation depths. The fine-grid simulations for each cluster representative can also be used to develop an improved strategy, in which these are combined with cheaper coarse-grid simulations of other members of the cluster. We illustrate the methodology by considering two coastal locations: Crescent City, CA and Westport, WA.