Synthetic activators of peroxisome proliferator-activated receptors (PPAR)-alpha and -gamma are capable of reducing macrophage foam cell cholesterol accumulation through the activation of genes involved in cholesterol homeostasis. Since conjugated linoleic acids (CLA) were also demonstrated to activate PPARalpha and PPARgamma in vivo and in vitro, we tested the hypothesis that CLA are also capable of reducing macrophage foam cell cholesterol accumulation. Thus, mouse RAW264.7 macrophage-derived foam cells were treated with CLA isomers, c9t11-CLA and t10c12-CLA, and linoleic acid (LA), as reference fatty acid, and analyzed for the concentrations of free and esterified cholesterol, cholesterol efflux and expression of genes involved in cholesterol homeostasis (CD36, ABCA1, LXRalpha, NPC-1, and NPC-2). Treatment with c9t11-CLA and t10c12-CLA, but not LA, lowered cholesterol accumulation, stimulated acceptor-dependent cholesterol efflux, and increased relative mRNA concentrations of CD36, ABCA1, LXRalpha, NPC-1, and NPC-2 (P < 0.05). In conclusion, the present study showed that CLA isomers reduce cholesterol accumulation in RAW264.7 macrophage-derived foam cells presumably by enhancing lipid acceptor-dependent cholesterol efflux.