The purpose of this work was to study the fire resistance of technical materials treated with flame retardants based on electroerosion powder of Aluminum hydroxide.Methods. Aluminum metal wastes of the AD0E brand were dispersed in distilled water at a loading weight of 250 g at an experimental installation. The resulting electroerosive aluminum powder was studied by various methods. The microanalysis was performed on a QUANTA 600 FEG microscope. The phase composition was studied using a Rigaku Ultima IV diffractometer. The fire resistance of the treated fabric was studied according to the following method: a strip of fabric 5 cm wide and 10 cm long was suspended in an upright position by one end in a tripod clamp (the other end remains hanging freely). The flame of an alcohol burner was placed under the lower end of the sample for 12 seconds (according to a stopwatch). After the specified time, the flame of the burner was removed and the burning and smoldering time of the sample was noted after the flame ceased to act. Gorenje After the end of the experiment, the area of the charred part of the sample was measured.Results. Experimental studies of the fire resistance of textile materials treated with flame retardants have shown high efficiency of using an electroerosive aluminum hydroxide powder for these purposes. Aluminum hydroxide powder was obtained in distilled water from electrical aluminum metal waste. The peculiarity of the use of the obtained aluminum hydroxide is due to the fact that it provides a difficult-to-ignite fabric, reduces the ability of the material to ignite, localizes the flame; provides a long-term flame retardant and at the same time antiseptic effect; treated fabrics are odorless, harmless to humans and animals; consumption for impregnating fabrics: 100-250 g/m2, depending on the density of the fabric.Conclusion. The effectiveness of flame retardants based on electroerosive Aluminum hydroxide powder is confirmed by the fact that cheap metal waste and progressive environmentally friendly (without wastewater and emissions), low- energy technology (up to 5 kWh/kg) are used for its production.