2020
DOI: 10.11591/ijece.v10i5.pp5497-5506
|View full text |Cite
|
Sign up to set email alerts
|

The effect of gamma value on support vector machine performance with different kernels

Abstract: Currently, the support vector machine (SVM) regarded as one of supervised machine learning algorithm that provides analysis of data for classification and regression. This technique is implemented in many fields such as bioinformatics, face recognition, text and hypertext categorization, generalized predictive control and many other different areas. The performance of SVM is affected by some parameters, which are used in the training phase, and the settings of parameters can have a profound impact on the resul… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
14
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 39 publications
(16 citation statements)
references
References 13 publications
0
14
0
2
Order By: Relevance
“…The results showed the same classification performance (Accuracy 83.04%) as without normalization. Further analysis in the next step seeks to compare performance while varying the penalty parameter C, kernel parameter Gamma, and kernel function, which are parameters that affect the performance of support vector machine [35]. In this paper, we select the optimal pair (C, Gamma) from C = {1(default),10,100} and Gamma = {0.01, 0.1, 1/number of input variables(default)}.…”
Section: Support Vector Machine 431 Optimal Model Of Support Vector Machinementioning
confidence: 99%
“…The results showed the same classification performance (Accuracy 83.04%) as without normalization. Further analysis in the next step seeks to compare performance while varying the penalty parameter C, kernel parameter Gamma, and kernel function, which are parameters that affect the performance of support vector machine [35]. In this paper, we select the optimal pair (C, Gamma) from C = {1(default),10,100} and Gamma = {0.01, 0.1, 1/number of input variables(default)}.…”
Section: Support Vector Machine 431 Optimal Model Of Support Vector Machinementioning
confidence: 99%
“…Pada kernel polinomial terdapat penggunaan derajat yang dapat diatur untuk meningkatkan kemungkinan data dapat dipisahkan secara linier dalam ruang berdimensi tinggi, tanpa memperlambat waktu model [13]. Pada kernel sigmoid penggunaan gamma dapat diatur untuk meningkatkan nilai akurasi akan tetapi bergantung pada jumlah fitur yang digunakan [14].…”
Section: Pendahuluanunclassified
“…3. Kernel sigmoid [20] Menurut [14] penggunaan gamma yang terlalu tinggi pada kernel sigmoid cenderung menurunkan tingkat akurasi pada suatu klasifikasi tetapi tetap bergantung pada jumlah fitur yang digunakan, semakin banyak jumah fitur maka gamma yang digunakan cenderung kecil, dan sebaliknya.…”
Section: Sigmoid Kernel ℎunclassified
“…Many of the common methods are used to detect intrusion in intrusion detection systems, such as Support vector machines [7,8], K-nearest neighbor (KNN) [9], and Random forest (RF) [10]. [11] Suggested IDS on the NSL-KDD dataset by using the support vector machine and decision tree algorithms [12], respectively. Use anomaly detection with the Naive Bayes (NB) [13] and examined on the KDD99 [14].…”
Section: Related Workmentioning
confidence: 99%