AbstractWhen reaching to a visual target, humans need to transform the spatial target representation into the coordinate system of their moving arm. It has been shown that increased uncertainty in such coordinate transformations, for instance when the head is rolled toward one shoulder, leads to higher movement variability and influence movement decisions. However, it is unknown whether the brain incorporates such added variability in planning and executing movements. We designed an obstacle avoidance task in which participants had to reach with or without visual feedback of the hand to a visual target while avoiding collisions with an obstacle. We varied coordinate transformation uncertainty by varying head roll (straight, 30° clockwise and 30° counterclockwise). In agreement with previous studies, we observed that the reaching variability increased when the head was tilted. Indeed, head roll did not influence the number of collisions during reaching compared to the head straight condition, but it did systematically change the obstacle avoidance behavior. Participants changed the preferred direction of passing the obstacle and increased the safety margins indicated by stronger movement curvature. These results suggest that the brain takes the added movement variability during head roll into account and compensates for it by adjusting the reaching trajectories.