Electric power steering (EPS) systems under existing vehicle power systems cannot provide enough power for heavy-duty commercial vehicles under pivot or low-speed steering conditions. To solve this problem, the paper proposes an EPS system that is based on the hybrid power system constituted by the vehicle power system and the supercapacitor in parallel. In order to provide a theoretical basis for the intervention and withdrawal mechanisms of a super-capacitor in the new EPS, the law of steering resistance torque at a low or extremely low vehicle speed should be explored. Firstly, the finite element model of tire/pavement was established to conduct the simulation and calculation of the low-speed steering friction force between the tire and pavement, and to obtain the fitting expression of the equivalent steering friction coefficient with the running speed of the tire. Secondly, the expression of the steering friction torque was deduced based on the calculus theory and mathematical model of the low-speed steering resistance torque, including the steering friction torque and aligning torques, established to conduct the simulation of the equivalent resistance torque applied on a steering column under low-speed condition. Subsequently, the real vehicle experiments were carried out and comparisons of the experimental results and simulation results was performed. The consistency indicated that the model of low-speed steering resistance torque had a high accuracy. Finally, the law of low-speed steering resistance torque with a vehicle speed and steering wheel angle were analyzed according to the 3D surface plot drawn from the simulation results.