The results of an experimental study of the relationship between the width turbulent combustion zone (TCZ) and composition of the composite fuel (hythane), the maximum pressure in combustion chamber of variable volume, the propagation velocity and electrical conductivity of the turbulent flame are presented. It was revealed that the width TCZ has a characteristic dependence on the composition of hythane. It was experimentally found that, despite a change coefficient of excess air, hydrogen concentration in the fuel, turbulence intensity and type of fuel (hythane and gasoline), the dependences of width TCZ on the turbulent flame propagation velocity and electrical conductivity of the flame, as well as the dependence maximum pressure on width, remain unchanged TCZ. The results of the work can be used in the design and development of energy-efficient and low-emission combustion chambers.