The development of an enantioselective sulfide oxidation involving a chiral iron catalyst and aqueous hydrogen peroxide as oxidant is described. In the presence of a simple carboxylic acid, or a carboxylate salt, the reaction affords sulfoxides with remarkable enantioselectivities (up to 96 % ee) in moderate to good yields. The influence of the structure of the additive on the reaction outcome is reported. In the sulfoxide-to-sulfone oxidation a kinetic resolution (with s = 4.8) occurs, which, however, plays only a negligible role in the overall enantioselective process. Furthermore, a positive nonlinear relationship between the ee of the product and that of the catalyst has been found. On the basis of these observations, a possible catalyst structure is proposed.