Damage to normal tissues remains the most important limiting factor in the treatment of cancer by radiotherapy. In order to deliver a radiation dose sufficient to eradicate a localised tumour, the normal tissues need to be protected. A number of pharmacological agents have been used experimentally, and some clinically, to alleviate radiation damage to normal tissues but at present there is no effective clinical treatment to protect normal tissues against radiation injury. This paper reviews the efficacy of pharmacological substances used after radiation exposure. The limited evidence available suggests that radiation insult, like many other tissue injuries, is amenable to pharmacological intervention. However, care must be taken in the administration of these substances for the management of different aspects of radiation damage because there appears to be a tissue-specific response to different pharmacological agents. Also, one must be aware of the limitations of results obtained from animal models, which do not necessarily correlate to benefits in the clinic; the conflicting results reported with some modifiers of radiation damage; and the toxicity of these substances and radiation doses used in published studies. Conflicting results may arise from differences in the pathophysiologic processes involved in the development of radiation lesions in different tissues, and in the markers used to assess the efficacy of treatment agents.