Natural gas emissions contribute to climate change, and equally importantly, affect the health of populations near gas fields.[1] At night, the flares from the Bakken fields in North Dakota burn as bright as the lights in cities as large as Minneapolis. Rather than flaring (or worse, venting), this associated natural gas represents a multi‐billion dollar opportunity.[2] Pipelines and liquefying natural gas are cost prohibitive in many cases. Converting methane to fuels is an attractive alternative.
We examined three options to convert natural gas to syngas (H2 and CO), which is the first step to producing fuels: Steam Methane Reforming (SMR), Auto‐Thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Based on a multi‐objective optimization analysis, C5+ hydrocarbon yields are highest with CPOX as the first step followed by Fischer‐Tropsch synthesis (FT). A micro‐refinery with the CPOX‐FT process treating 2800 normalkL·d−1 (100 MCF·d−1) natural gas, produces 1300 normalL·d−1 (8.2 bbl·d−1) of C5+ hydrocarbons. Maximum yields for the SMR‐FT and ATR‐FT processes are 938 normalL·d−1 and 1100 normalL·d−1 (5.9 bbl·d−1, 7.0 bbl·d−1) of C5+, respectively. Large‐scale POX and ATR processes produce 1600 L per 2800 kL (10 bbl per 100 MCF) of natural gas.