2021
DOI: 10.24138/jcomss-2021-0035
|View full text |Cite
|
Sign up to set email alerts
|

The Effect of Latent Space Dimension on the Quality of Synthesized Human Face Images

Abstract: In recent years Generative Adversarial Networks (GANs) have achieved remarkable results in the task of realistic image synthesis. Despite their continued success and advances, there still lacks a thorough understanding of how precisely GANs map random latent vectors to realistic-looking images and how the priors set on the latent space affect the learned mapping. In this work, we analyze the effect of the chosen latent dimension on the final quality of synthesized images of human faces and learned data represe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 14 publications
(5 citation statements)
references
References 20 publications
0
3
0
2
Order By: Relevance
“…The choice of latent space was a normal distribution in our implementation. As evident from the literature, the quality of generated data of a GAN depends on the dimensions of the latent space 62 , 63 . Even though there are no standards for latent space dimensions, a size of 100 or 512 is preferred in image generation tasks.…”
Section: Methodsmentioning
confidence: 99%
“…The choice of latent space was a normal distribution in our implementation. As evident from the literature, the quality of generated data of a GAN depends on the dimensions of the latent space 62 , 63 . Even though there are no standards for latent space dimensions, a size of 100 or 512 is preferred in image generation tasks.…”
Section: Methodsmentioning
confidence: 99%
“…2.B. The input is a random noise vector of size 1×1×100 with values between 0 and 1, which is a usual standard [42]. The vector is reshaped as a concatenation into an array of size 4 × 4 × 100.…”
Section: Generator Gan Amentioning
confidence: 99%
“…Gambar yang dihasilkan oleh jaringan generator merupakan gambar fotorealistik baru yang ditransformasikan berdasarkan pemetaan latent vector yang teracak dan berada pada ruang latent n-dimensi. [6]. Transformasi gambar yang bermakna dihasilkan dari latent vector melalui operasi aritmatika dalam latent space dimension [7].…”
Section: Pendahuluan Emanfaatan Dari Artificial Intellegence Sertaunclassified
“…Untuk menguji efek dimensi ruang laten pada citra yang dihasilkan oleh generator dibutuhkan evaluasi GAN dengan menggunakan metode yang efisien dan objektif, yaitu metode evaluasi kuantitatif [6]. Terdapat dua metrik evaluasi GAN secara kuantitaif, salah satunya adalah Fre'chet Inception Distance (FID).…”
Section: Pendahuluan Emanfaatan Dari Artificial Intellegence Sertaunclassified