A layered double hydroxide (LDH) containing Mg and Al was synthesized from a nitrate solution using a coprecipitation method. The resulting material exhibited a homogeneous structure, which, upon calcination at 450 °C, was converted into a layered double oxide (LDO). When rehydrated in a fluoride-containing aqueous solution, the original hydroxide structure was successfully regenerated, demonstrating the LDH’s memory effect. During this transformation, fluoride anions from the solution were incorporated into the interlayer galleries to maintain electroneutrality, as confirmed by energy-dispersive X-ray spectroscopy (EDS) analysis. Separately, the process was tested in the presence of ethanol, which significantly enhanced the incorporation of fluoride ions into the interlayer spaces. The material’s potential for controlled fluoride release was evaluated by monitoring its release into demineralized water. For comparison, a simple ion-exchange process was carried out using the as-synthesized MgAl LDH. The memory effect mechanism displayed a notably higher fluoride incorporation capacity compared to the ion-exchange process. Among all the specimens, the sample reconstructed in the presence of ethanol exhibited the highest fluoride ion content. Fluoride release studies revealed a two-phase pattern: an initial rapid release within the first three hours, followed by a substantially slower release over time.