The South China Block, a region renowned for its extensive granite distribution and rich metal deposits, serves as a natural laboratory for the study of granite-related mineralization. This research focuses on the Tongtianmiao granite pluton, which is located at the intersection of the Qin-Hang and Nanling metallogenic belts and has been confirmed as a significant lithium mineral resource. Despite its discovery and ongoing development, the lithium-rich Tongtianmiao pluton has been understudied, particularly concerning its petrogenesis, which has only recently come to the forefront of scientific inquiry. By integrating an array of petrogeochemical data with geochronological studies derived from zircon and monazite dating, this study provides insights into the magmatic processes related to lithium enrichment in the Tongtianmiao granites. The Tongtianmiao granites are classified as A-type granites characterized by high SiO2 contents (69.18–78.20 wt.%, average = 74.08 wt.%), K2O + Na2O contents (4.59–8.34 wt.%, average = 6.86 wt.%), A/CNK > 1.2, and low concentrations of Ca, Mg, and Fe. These granites are enriched in alkali metals such as Li, Rb, and Cs but are significantly depleted in Ba, Sr, and Eu. They show no significant fractionation of light or heavy rare-earth elements but present characteristic tetrad effects. A finding of this study is the identification of multiple ages from in situ zircon U–Pb dating, which implies a prolonged history of magmatic activity. However, given the high uranium content in zircons, which could render U–Pb ages unreliable, emphasis is placed on the monazite U–Pb ages. These ages cluster at approximately 172.1 ± 1.1 Ma and 167.9 ± 1.6 Ma, indicating a Middle Jurassic period of granite formation. This timing correlates with the retreat of the Pacific subduction plate and the associated NE-trending extensional fault activity, which likely provided favorable conditions for lithium enrichment. The study concluded that the Tongtianmiao granites were formed through partial melting of crustal materials and subsequent underplating by mantle-derived materials, and were contaminated by strata materials. This process resulted in the formation of highly differentiated granite through magmatic differentiation and external forces. These findings have significant implications for understanding the petrogenesis of lithium-rich granites and are expected to inform future exploration endeavors in the Tongtianmiao pluton.