Abstract. The article is dedicated to the development asymptotic theory of gas flowing at speed next to sound velocity, particularly of gas transonic flows, i.e. the flows, containing both, subsonic and supersonic areas. The main issue, when styding such flows, are nonlinearity and combined type of equations, describing the transonic flow. Based on asymptotic nonlinear equation obtained in the article, the gas transonic flows is studied, considering transverse disturbance with respect to the main flow. The asymptotic conditions at shock-wave front and conditions on the streamlined surface are found. Moreover, the equation of sound surface and asymptotic formula defining the pressure are recorded. Several exact particular solutions of such equation are given, and their application to solve several tasks of transonic aerodynamics is indicated. Specifically, the polynomial form solution describing gas axisymmetric flows in Laval nozzles with constant acceleration in direction of the nozzle's axis and flow swirling is obtained. The solutions describing the unsteady flow along the channels between spinning surfaces are presented. The asymptotic equation is obtained, describing the flow, appearing during non-separated and separated flow past, closely approximated to cylindrical one. Specific solutions are given, based on which the examples of steady flow are formed.