Indocyanine green (ICG) is a near-infrared
(NIR) contrast agent
commonly used for in vivo cardiovascular and eye
imaging. For medical diagnosis, ICG is limited by its aqueous instability,
concentration-dependent aggregation, and rapid degradation. To overcome
these limitations, scientists have formulated ICG in various liposomes,
which are spherical lipid membrane vesicles with an aqueous core.
Some encapsulate ICG, while others mix it with liposomes. There is
no clear understanding of lipid–ICG interactions. Therefore,
we investigated lipid–ICG interactions by fluorescence and
photon correlation spectroscopy. These data were used to design stable
and maximally fluorescent liposomal ICG nanoparticles for NIR optical
imaging of the lymphatic system. We found that ICG binds to and is
incorporated completely and stably into the lipid membrane. At a lipid:ICG
molar ratio of 250:1, the maximal fluorescence intensity was detected.
ICG incorporated into liposomes enhanced the fluorescence intensity
that could be detected across 1.5 cm of muscle tissue, while free
ICG only allowed 0.5 cm detection. When administered subcutaneously
in mice, lipid-bound ICG in liposomes exhibited a higher intensity,
NIR image resolution, and enhanced lymph node and lymphatic vessel
visualization. It also reduced the level of fluorescence quenching
due to light exposure and degradation in storage. Lipid-bound ICG
could provide additional medical diagnostic value with NIR optical
imaging for early intervention in cases of lymphatic abnormalities.