Mastication reduced the molecular weight of natural rubber (NR). This would affect the tensile properties and straininduced crystallization of the rubber vulcanizates due to the structural changes of the rubber molecules. In this study, influences of mastication time on tensile response, deformation-induced crystallization, and structural effects of crosslinked NR were investigated. The crystallization behavior and structural changes during stretching were studied by means of wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS). Increased mastication time significantly affected modulus at specified strain and upturn point of strain-induced crystallization of the crosslinked samples while the tensile strength was influenced slightly by mastication. During stretching, degree of crystallinity at given strain was found to decrease with increasing mastication time, while the crystallite size was reduced. Moreover, the size of crosslinked network structures induced by crosslinking also decreased slightly with increasing mastication time, as suggested by SAXS measurement.