The role of cytoplasmic activator of adenylate cyclase in rat lung metabolism was investigated. Mouse adrenal tumor (MAT) cells undergo differentiation in response to choleratoxin which acts through cyclic AMP. The activator of adenylate cyclase from rat lung also produced cyclic AMP in a disrupted MAT cell preparation. However, unlike choleratoxin, it did not induce MAT cell differentiation in whole cells. These results suggest impermeability of MAT cells, and possibly other cells, to the activator. Thus, means of altering activator activity in lung cytoplasm were sought, and changes in activator activity were related to lung glycogen. Adrenalectomy (ADX) in rats led to a reduction in activator activity that was accompanied by an elevation in lung glycogen. Dexamethasone treatment of adrenalectomized rats reversed both of these effects. Streptozotocin-induced diabetes in rats elevated activator activity and lowered lung glycogen. Insulin treatment of the diabetic rats restored activator activity to the normal control values. Preweaning of rats on day 16 instead of day 22 increased activator activity on the 19th day over the controls and there was a concomitant decrease in lung glycogen. Feeding the separated pups with homogenized milk restored glycogen and activator activity to the control values. These results indicate that activator activity in rat lung cytoplasm was dependent on the circulating levels of cortisol and insulin, and that there appeared to be an inverse relationship between activator activity and glycogen level in rat lungs.