Background: There has been a rapid increase in bone tissue regeneration since the concept of "tissue engineering." Stem cell-based biomaterials have revolutionized the field of tissue regeneration. Biomaterials play an essential part in bone regeneration through their crucial substratum for cell differentiation, cohesion, and proliferation by manipulating cells. Numerous studies have been carried out in order to create a biomaterial with diverse biological and physical characteristics. Furthermore, they developed a cell microenvironment with the desired pore magnitude to stimulate stem cells to transform them from artificial to biological microenvironments.
Purpose and scope:The current review aims to give a comprehensive overview of stem cells and biomaterials in bone tissue regeneration.Summary: Initially, bone biology and its interaction with stem cells and biomaterials are briefly explained. Following that, the behavior and mechanism of biomaterials influencing the stem cells during bone tissue regeneration are emphasized. Lastly, the future outlook for tackling the current challenges for designing biomaterials/stem cell materials for bone tissue engineering (TE) is discussed.
Conclusion:Compatible biomaterial for bone regeneration requires evaluating the structure, matrix, composition, flexibility, and nature of native bone tissue defects. The concept of TE offers a platform for designing biologically, physically, and chemically biocompatible biomaterials for stem cells to proliferate and differentiate. Currently, stem cells are increasingly used for TE with a promising outcome due to their selfrenewal and differentiation potential. Furthermore, they can secrete biological-active compounds and modulate the fate and behavior of other cells in native tissues. Bone TE may flourish more rapidly and efficiently using stem cells.