The present study was performed on three versions of 7075 alloy to which Sc or Sc + Li was added. The alloys were subjected to various aging treatments. The microhardness results show that the highest value of hardness was achieved when the alloy containing Li + Sc was aged at 120 °C for 24 h whereas the minimum level was exhibited by the base alloy aged at 280 °C. The results were interpreted in terms of the size and distribution of the main hardening phase (η′(MgZn2)), and the role of the presence of Al and Cu in the used alloy. Precipitation of Al3(Sc, Zr, Ti) phase particles during solidification of the Sc-containing ingots was also discussed. The coarsening and spheroidi-zation of η-phase particles take place through the Ostwald ripening mechanism while smaller par-ticles in solution dissolve and deposit on larger particles. In Sc-containing alloys, star phase particle consists of different layers. The change in the brightness from layer to layer indicates that the Zr and Sc concentrations are varied within the star phase, since the atomic number of Zr (40) is higher than the atomic number of Sc (21). The addition of Sc, as well, leads to marked decrease in the grain size of the as-cast alloys i.e., 300 µm and 45 µm, respectively. The interaction between Li and Sc would reduce the effectiveness of the grain refining effect of Sc. The results of the refining effect of Sc were confirmed using the EBSD technique.