Corrosion and kinetics of electrode processes on St3 steel with a superhydrophobic coating based on laser surface texturing followed by hydrophobization with fluoroxysilane (wetting angle 165±2°, rolling angle 3±1°) have been studied in a highly mineralized chloride medium (50 g/L NaCl) in the absence and presence of an additive of hydrogen sulfide (400 mg/L). Similar studies were conducted with uncoated electrodes. The influence of a duration of an exposure of the electrodes in a solution (0.25-96 hours) on kinetics of electrode processes and corrosion rate of steel is considered. In the absence of hydrogen sulfide, a presence of a superhydrophobic coating on steel causes a decrease in the corrosion rate by 67, 13, and 2 times after 0.25, 24, and 48 hours of exposure in a chloride solution. In time, the cathodic process slows down and the anodic one accelerates, especially in a case of electrodes with a hydrophobic coating. In the presence of hydrogen sulfide in a chloride solution, steel with a superhydrophobic coating is characterized by more than an order of magnitude low corrosion rate, compared with unprotected samples during a 96-hour exposure of the electrodes. In this case, there is a slowdown in the anodic reaction and acceleration of the cathodic one compared to the solution without hydrogen sulfide. The corrosion process proceeds with anodic control.