An easy and efficient process involving ball milling under soft conditions and spark plasma sintering was used to synthesize higher manganese silicide (HMS)-based compounds, for example MnSi 1.75 Ge 0.02 , with different molybdenum, tungsten, and aluminium substitution. The x-ray diffraction patterns of the samples after sintering showed the main phase to be HMS with the presence of some side products. Molybdenum substitution enlarges the unit cells more than tungsten substitution, owing to its greater solubility in the HMS structure, whereas substitution with aluminium did not substantially alter the cell parameters. The electrical resistivity of HMS-based compounds was reduced by <10% by this substitution, because of increased carrier concentrations. Changes of the Seebeck coefficient were insignificant after molybdenum and aluminium substitution whereas tungsten substitution slightly reduced the thermopower of the base material by approximately 8% over the whole temperature range; this was ascribed to reduced carrier mobility as a result of enhanced scattering. Substitution with any combination of two of these elements resulted in no crucial modification of the electrical properties of the base material. Large decreases of lattice thermal conductivity were observed, because of enhanced phonon scattering, with the highest reduction up to 25% for molybdenum substitution; this resulted in a 20% decrease of total thermal conductivity, which contributed to improvement of the figure of merit ZT of the HMS-based materials. The maximum ZT value was approximately 0.40 for the material with 2 at.% molybdenum substitution at the Mn sites.