The gradual replacement of Ca2+ with Cu2+ ions in brushite (CaHPO4·2H2O) has been extensively studied and discussed. The approach adopted in this work has not been systematically explored in previous studies. This novel approach may prove beneficial for the production of Ca1−xCuxHPO4·nH2O materials with desired properties suitable for medical applications. Solutions of sodium dihydrogen orthophosphate dihydrate, NaH2PO4·2H2O, calcium nitrate tetrahydrate, Ca(NO3)2·4H2O, copper nitrate trihydrate, Cu(NO3)2·3H2O, ammonium hydroxide solution, and diluted HCl were used for the preparation of these materials. At low Cu/Ca molar ratios (up to 0.25) in the starting solution, biphasic phosphate minerals were formed: brushite and sampleite. When the Cu/Ca molar ratio increases gradually from 0.67 to 1.5, sampleite-like mineral precipitates. Powdered XRD (X-ray diffraction), thermogravimetric (TG) analysis, and SEM (scanning electron microscopy) techniques were employed for the study of the microstructure of the produced materials for different degrees of Ca replacement with Mg. It is found that the Cu/Ca ratio in the starting solution can be adjusted to obtain materials with tailored composition. Thus, a new method of sampleite-like synthesis as a rare mineral is introduced in this study. Both phosphate minerals brushite and sampleite-like minerals are attractive as precursors of bioceramics and biocements. The search for such products that may decrease the possibility of post prosthetic or implant infection can be crucial in preventing devastating post-surgical complications.